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In polycrystals, there are spatial correlations in grain-boundary species, even in

the absence of correlations in the grain orientations, due to the need for

crystallographic consistency among misorientations. Although this consistency

requirement substantially influences the connectivity of grain-boundary

networks, the nature of the resulting correlations are generally only appreciated

in an empirical sense. Here a rigorous treatment of this problem is presented for

a model two-dimensional polycrystal with uncorrelated grain orientations or,

equivalently, a cross section through a three-dimensional polycrystal in which

each grain shares a common crystallographic direction normal to the plane of

the network. The distribution of misorientations �, boundary inclinations ’ and

the joint distribution of misorientations about a triple junction are derived for

arbitrary crystal symmetry and orientation distribution functions of the grains.

From these, general analytical solutions for the fraction of low-angle boundaries

and the triple-junction distributions within the same subset of systems are found.

The results agree with existing analysis of a few specific cases in the literature

but present a significant generalization.

1. Introduction

The properties and behaviour of polycrystalline materials are

strongly influenced by crystallographic elements of their

microstructure. Generally, the more information that a parti-

cular function provides about the microstructure, the more

difficult is its measurement and relation to actual material

behaviour. As a result, it is a continuing challenge to express

the microstructure in terms of a simple function that still

captures enough of the relevant crystallographic information

to allow reasonable predictions of material properties. This is

especially true for the broad range of properties that depend

on the character of grain boundaries, for which the classical

orientation distribution function (Roe, 1965, 1966; Haessner et

al., 1983; Bunge, 1993) does not directly apply. Many of the

physical properties of grain boundaries appear to be princi-

pally related to their misorientation (Handscomb, 1957;

Mackenzie & Thomson, 1957; Mackenzie, 1958, 1964;

Grimmer, 1974; Warrington & Boon, 1975; Grimmer, 1979,

1980; Haessner et al., 1983; Zhao & Adams, 1988; Adams et al.,

1990; Morawiec, 1995; Morawiec & Field, 1996), and deter-

mination of the distribution of this quantity is often the focus

of grain-boundary characterization. The coincidence site

lattice (CSL) theory provides a specific model to understand

the relationship connecting misorientation to physical prop-

erties, and is frequently used in the literature (Brandon, 1966;

Warrington & Boon, 1975). A more refined analysis of

boundary properties reveals a dependence on the orientation

of the interface as well; interest in the distributions of

boundary normals (Hilliard, 1962; Philofsky & Hilliard, 1969;

Adams & Field, 1992), the indices of the crystallographic

planes meeting at an internal interface (Saylor et al., 2003a,b;

Saylor, El Dasher, Rollett & Rohrer, 2004; Saylor, El Dasher,

Pang et al., 2004; Saylor, El Dasher, Sano & Rohrer, 2004), and

joint distributions of the misorientation and plane of a

boundary (Adams, 1986; Zhao et al., 1988; Morris et al., 1988)

is increasing.

While these distributions provide significant information

about individual grain boundaries in a microstructure, a

number of investigations suggest that this description is

insufficient for certain applications. For example, the

connection between orientation and misorientation distribu-

tions is ambiguous; materials sharing a single orientation

distribution function may exhibit different CSL misorientation

fractions (Gertsman et al., 1992; Pan & Adams, 1994). Some

findings suggest that this is due to neglect of orientation

correlations of adjoining grains (Zhao et al., 1988; Gertsman et

al., 1992; Adams, 1993; Pan & Adams, 1994), or to differences

in the connection length for boundaries of a distinct type

(Adams et al., 1993). The development of theories to satis-

factorily explain these variations in grain-boundary character

necessarily involves structures more complicated than a single

grain boundary; any analysis must begin with the structures

within which the observed correlations occur. Since a triple

junction is the smallest segment of the boundary network

more inclusive than a single grain boundary, this structure is a

natural candidate. Analyses of triple junctions within the CSL

theory reveal that the granular nature of the material sharply



constrains the sets of misorientations allowed at these junc-

tions (Miyazawa, Iwasaki et al., 1996; Miyazawa, Ito & Ishida,

1996; Minich et al., 2002; Frary & Schuh, 2003a; Reed &

Kumar, 2006). In other words, there are necessary correlations

in the misorientation distributions, even when the grain

orientations are completely uncorrelated. The experimental

importance of this constraint upon the properties of poly-

crystals was first emphasized by Kumar et al. (2000). Gertsman

presented a particularly rigorous analysis of these correlations

for ideal CSL misorientations, and further extended his

analysis to higher-order structures including quadruple nodes

(Gertsman, 2001a,b, 2002). Alternatively, triple junctions and

their effect on the connectivity of boundaries in the network

have been investigated using percolation theory (Frary &

Schuh, 2003b; Schuh, Kumar & King, 2003a,b; Schuh, Minich

& Kumar, 2003; Frary & Schuh, 2004; Van Siclen, 2006),

although studies on correlations in structures more compli-

cated than triple junctions remain, for the most part, empirical

observations (Frary & Schuh, 2005a,b; Schuh & Frary, 2006).

The purpose of this paper is to develop a methodology for

analysing correlations, arising purely from the granular nature

of polycrystalline materials, in the quantities that uniquely

specify the states of grain boundaries. Our approach differs

from the pertinent existing literature described above in the

sense that we do not classify the boundaries (e.g. by the CSL

model) prior to examining the strength of the correlations.

Rather, we perform classification as a subsequent step, since

boundary classification reduces the available information and

thereby obscures the effects of correlations. This further

allows our results to be interpreted using classification

schemes other than the one used herein. The approach is

worked out in detail for an arbitrary two-dimensional poly-

crystal with no spatial correlation in grain orientations;

extension to the three-dimensional analogue will be addressed

in future research.

2. Definition of the system

Our system consists of a two-dimensional polycrystal, in which

the orientation of each grain is fully specified by a single

rotation in the plane, through an angle ! relative to a fixed

reference orientation. This construct also applies to a cross

section through a three-dimensional polycrystal in which each

grain shares a common crystallographic direction n normal to

the plane of the network, with ! the rotation about n. The area

orientation distribution function is, for a uniform grain size,

identical to the distribution of orientations of the crystallites

(Bunge, 1993), and expresses the probability that the orien-

tation of a single grain is given by !. Similarly, the distribution

in the orientations of the boundary planes is specified as a

function of the angle �, measured with respect to the same

reference orientation. Assuming that there are no correlations

among grain orientations and none relating the grain orien-

tations to the boundary normal, this information is sufficient

to determine the distribution function describing the types of

grain boundaries present in the material. While a two-

dimensional polycrystal is a significant simplification from the

three-dimensional polycrystals typically studied in practice,

the majority of the literature on grain-boundary correlations

currently focuses on grain-boundary types in two-dimensional

cross sections. The present treatment therefore allows ready

comparison with some existing literature and, furthermore, is

expected to generalize to the three-dimensional case.

We represent the orientation distribution function f(!) as a

Fourier series with periodicity !s ¼ 2�=k, where an axis of

k-fold rotational symmetry coincides with the n direction. This

yields, for an arbitrary distribution function of the appropriate

symmetry,

f ð!Þ ¼
1

!s

þ
X1
n¼1

an cosðkn!Þ þ bn sinðkn!Þ; ð1Þ

where the Fourier coefficients an and bn prescribe the details

of the preferred orientation. Notice that f(!) is normalized

over �!s=2 � !<!s=2, since this range contains all unique

crystallite orientations. Meanwhile, we shall constrain our

attention to simple systems based on a single triple junction

schematically represented in Fig. 1, with the grains and

boundaries labelled A, B and C in the manner depicted. Grain

orientations and grain-boundary descriptors will be labelled

with these subscripts in some cases, e.g. !A denotes the

orientation of grain A.

A single boundary is completely specified by the rotations !
and !0 of the adjacent grains and by the inclination �, each

measured with respect to the reference orientation. Although

! is a natural variable of the orientation distribution function

describing the state of the grains, it is not a clear descriptor for

a grain boundary. Since the properties of a grain boundary

must remain invariant under an arbitrary rotation of the

material, the natural quantities to describe a grain boundary
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Figure 1
Representative triple junction depicting the physical significance of the
quantities ! and �. Grain A is rotated by the angle !A and is located
opposite the boundary with orientation �A; a similar geometry applies for
grains B and C.



must be defined in the local crystal frame. The misorientation

of adjoining grains is explicitly given by

� ¼ !0 � !: ð2Þ

Meanwhile, following the notation of Read & Shockley

(1950), we define the orientation ’ of the boundary plane in a

manner that shares the misorientation equally between the

grains, or

’ ¼ ��
!0 þ !

2
: ð3Þ

These relationships may be derived from examination of Fig.

2, which depicts a single boundary defined relative to the

external and local reference frames.

Each grain orientation ! is symmetrically equivalent to the

value !þ n!s for any integer value of n, and similarly !0 is

symmetrically equivalent to the value !0 þm!s for any

integer value of m. Then, according to equation (2), � is

symmetrically equivalent to � þ !sðm� nÞ, and the distribu-

tion of � displays a periodicity of !s. Similarly, ’ is sym-

metrically equivalent to ’� !sðmþ nÞ=2, and the distribution

of ’ displays a periodicity of !s=2. However, when � and ’
refer to the same boundary and share values for the indices m

and n, the periodicities change to 2!s and !s, respectively.

Since simple distributions, e.g. of the misorientation alone,

display the periodicity corresponding to the first case, � and ’
are defined to fall within the ranges �!s=2 � � <!s=2 and

�!s=4þ � � ’<!s=4þ �. As we shall see, in some cases this

necessitates the application of further symmetries in order to

enforce the required periodicity on joint distribution func-

tions.

Crystallographic constraints impact the local grain-

boundary statistics only when considering the values of � and

’ for multiple boundaries simultaneously; in other words, the

granular crystalline nature of the material generates spatial

correlations in grain-boundary character, despite the absence

of correlations in grain orientations. For example, consider the

grains and boundaries around a triple junction, as appears in

Fig. 3. The orientations ! of the three grains are specified

independently. � and ’ for each boundary depend on the

orientations of the adjoining grains or, alternatively, the

orientation of a single grain influences the type of each of the

adjoining boundaries. Therefore, the � and ’ for multiple

boundaries may not be considered independently. Since these

quantities uniquely specify the state of a grain boundary, and

our purpose is to examine correlations in boundary character

arising from the granular crystalline nature of the material, the

remainder of this paper is devoted to finding distributions of

and correlations among the � and ’ given a set of grain

orientations !, each independently distributed according to

the arbitrary orientation distribution function f(!). The
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Figure 2
Comparison of the quantities used to define the state of a grain boundary.
A single boundary is depicted in terms of (a) !, !0 and � and (b) � and ’.
Notice that in (b) the grains share the misorientation equally, resulting
from a rotation of the system in (a).

Figure 3
Labelling scheme for the grain rotations ! and the quantities � and ’
around a triple junction. The misorientations � are the rotations that
bring the grain at the tail of the arrow into coincidence with the grain at
the head. Our labelling scheme differs in sense from some similar
examples in the literature (Frary & Schuh, 2004).



procedure for finding a joint distribution of a set of the

quantities � and ’ is as follows.

(i) Construct the function

FðxÞ ¼ f ð!1Þf ð!2Þ . . . f ð!nÞ ð4Þ

to provide the joint distribution of rotations !j of each of the n

grains involved in the problem, where x is a vector quantity

containing the n !j as elements. For example, n ¼ 2 for a single

grain boundary and n ¼ 3 for a triple junction. Notice that this

equation expressly forbids the introduction of correlations in

grain orientations.

(ii) State the equations relating the known grain rotations !j

to the grain-boundary character parameters; these desired

quantities are called yi, with each of the yi denoting either a �
or a ’ as in equations (2) and (3). Examination of the defi-

nitions of � and ’ reveals that these are linear or affine

functions of the grain rotations, suggesting a compact

expression for the transformation equations in the form

y ¼ Ax; ð5Þ

where y is a vector quantity containing the m yi as elements

and A is the m by n transformation matrix. Situations where A

is affine will require the modification of x and y to conform

with the use of homogeneous coordinates by appending a

constant term to these vectors.

(iii) Determine the equations of the inverse transformation,

relating the yi to the !j. Provided the transformation matrix A

is invertible, the equation containing the inverse transforma-

tion equations is

x ¼ A�1y: ð6Þ

When the matrix A is not invertible, A must be decomposed

by singular-value decomposition (see e.g. Strang, 2006), and

the non-invertible component removed by integration.

(iv) Substitute the expressions for the !j in terms of the yi

into the joint probability distribution of the !j in equation (4)

to find the joint probability distribution of the desired quan-

tities yi. This amounts to a transformation of space, from one

spanned by the !j to one spanned by the yi, in which a single

probability distribution function is embedded. Since this

transformation generally includes a stretching component, the

transformed probability density function must be multiplied

by an appropriate factor to remain normalized; in situations

where A is invertible, this factor is the magnitude of the

determinant of A�1. Otherwise, the necessary multiplicative

factor is found by multiplying the inverses of the singular

values of A.

(v) Adjust the distribution function to account for

symmetry defined to be present in the distributions of the yi

that is not captured by the inherent periodicity of the !j.

Generally, this requires summing the derived distribution

function with an equivalent distribution function shifted by an

appropriate distance in the y space.

Since the full transformation procedure is often quite

involved, a series of examples follows.

3. Distribution functions for a single boundary

As defined above, a single boundary is uniquely specified by a

pair of values � and ’; the distribution function completely

characterizing a single boundary is given by the joint prob-

ability distribution function of these quantities. We perform

this derivation for the boundary type described by �A and ’A,

which depend exclusively on !B and !C, as indicated in Fig. 3.

3.1. Joint distribution of h and u

Step (i) is to construct the joint distribution function for !B

and !C; reference to equations (1) and (4) indicates that the

relevant distribution function of the grain rotations is

Fð!B; !CÞ ¼
1

!2
s

þ
1

!s

�X1
n¼1

an½cosðkn!BÞ þ cosðkn!CÞ�

þ bn½sinðkn!BÞ þ sinðkn!CÞ�

�

þ

�X1
m¼1

X1
n¼1

½am cosðkm!BÞ þ bm sinðkm!BÞ�

� ½an cosðkn!CÞ þ bn sinðkn!CÞ�

�
: ð7Þ

To execute step (ii), we refer to equations (2) and (3), which

indicate that the desired quantities may be expressed in terms

of the grain rotations as

�A

’A

1

0
@

1
A ¼

�1 1 0

�1=2 �1=2 �A

0 0 1

0
@

1
A !B

!C

1

0
@

1
A: ð8Þ

Since the expression for ’A includes a constant term, the

transformation A contains a translational component; A is

therefore affine, and is expressed in matrix form using

homogeneous coordinates. Since A is invertible, step (iii) is

straightforward:

�1=2 �1 �A

1=2 �1 �A

0 0 1

0
@

1
A �A

’A

1

0
@

1
A ¼

!B

!C

1

0
@

1
A; ð9Þ

from which we obtain !B ¼ ��A=2� ’A þ �A and

!C ¼ �A=2� ’A þ �A. Substitution of these equalities into

equation (7) and multiplication by the magnitude of the

determinant of A�1 in equation (9) completes step (iv). The

joint distribution of � and ’ is
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Fð�; ’Þ ¼
1

!2
s

þ
2

!s

�X1
n¼1

cos
k

2
n�

� �
fan cos½knð’� �Þ�

� bn sin½knð’� �Þ�g

�

þ

�X1
m¼1

X1
n¼1

am cos km
�

2
þ ’� �

� �� ��

� bm sin km
�

2
þ ’� �

� �� ��

� an cos kn
�

2
� ’þ �

� �� ��

þ bn sin kn
�

2
� ’þ �

� �� ���
; ð10Þ

where the subscript A has been dropped, since this result

applies to any boundary with an arbitrary inclination � in the

external reference frame.

Recall that the periodicity of ! implies the symmetric

equivalence of � with � þ !sðm� nÞ, and of ’ with

’� !sðmþ nÞ=2. If these periodicities are independent of one

another (i.e. if m and n are independent), the symmetries of

the system can be represented by the lattice of symmetrically

equivalent points displayed in Fig. 4(a), which is consistent

with the required boundary conditions on � and ’. However,

in the present case � and ’ refer to the same grain boundary,

and the indices m and n are shared. Therefore, the symmetry

of equation (10) is represented by the lattice in Fig. 4(b);

observe that this lattice misses some of the required sym-

metries in the definition of � and ’, i.e. Fig. 4(b) is of lower

symmetry than is Fig. 4(a). Therefore, equation (10) must be

modified to incorporate the required symmetries. Examina-

tion of these figures indicates that the lattice in Fig. 4(a) may

be constructed by combining the lattice in Fig. 4(b) with the

equivalent lattice shifted in the � direction by !s or in the ’
direction by !s=2; this leads to the equation

F ð�; ’Þ ¼ Fð�; ’Þ þ Fð� � !s; ’Þ ¼ Fð�; ’Þ þ Fð�; ’� !s=2Þ;

ð11Þ

where the symbol F denotes the final distribution function

with the proper symmetry that is consistent with the specified

periodicities. The conversion from the function F to F

completes step (v) of the derivation.

3.2. Individual distributions in h and u

Once the function F is found, relevant subdistributions may

be readily determined. For example, the joint distribution

function of � and ’ contains information specifying the

distribution functions for � and ’ separately; these separate

distributions are found by integrating out the dependence on

the other variable. This may be done using either F or F ,

which return identical results provided that the integral is

performed over one period of the distribution in the dimen-

sion of the variable to be removed. While F is consistent with

the preceding definitions of � and ’, the integration is often

simpler in F due to the nature of the trigonometric terms

present.

The probability density function describing the distribution

of misorientations � is given by

F ð�Þ ¼
R!s=4þ�

�!s=4þ�

F ð�; ’Þ d’

¼ 1
2

R!s=2þ�

�!s=2þ�

Fð�; ’Þ þ Fð� � !s; ’Þ d’

¼
R!s=2þ�

�!s=2þ�

Fð�; ’Þ d’: ð12Þ
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Figure 4
Lattices of symmetrically equivalent points and corresponding unit cells
for � and ’ at a single grain boundary. (a) � and ’ display independent
periodicities of !s and !s=2, respectively, resulting in a rectangular lattice
and simply described boundaries. (b) � and ’ display joint periodicities,
leading to a sparser lattice, an extended range of unique quantity pairs
and more complicated boundaries.



The trigonometric terms in this integral either vanish for all

values of the indices m and n or evaluate to constants for

m ¼ n and vanish for other values, according to the relations

provided in Appendix A. With simplification, this integral

returns

F ð�Þ ¼
1

!s

þ
!s

2

X1
n¼1

ða2
n þ b2

nÞ cosðkn�Þ ð13Þ

for the distribution of misorientation angles in the boundary

network. Similarly, the distribution of boundary plane normals

’ is determined as

F ð’Þ ¼
R!s=2

�!s=2

F ð�; ’Þ d�

¼ 1
2

R!s

�!s

Fð�; ’Þ þ Fð�; ’� !s=2Þ d�

¼
R!s

�!s

Fð�; ’Þ d�: ð14Þ

Following simplification with reference to Appendix A, this

yields the distribution function

F ð’Þ ¼
2

!s

þ !s

X1
n¼1

fða2
n � b2

nÞ cos½2knð’� �Þ�

� 2anbn sin½2knð’� �Þ�g: ð15Þ

4. Triple-junction misorientation distribution

Within the literature, studies of the effects of crystallographic

constraints on grain-boundary networks frequently concen-

trate on the character and influence of the constraints on

boundaries joining at triple junctions (Miyazawa, Iwasaki et

al., 1996; Miyazawa, Ito & Ishida, 1996; Kumar et al., 2000;

Gertsman, 2001a,b; Kumar et al., 2002; Gertsman, 2002;

Minich et al., 2002; Frary & Schuh, 2003a,b; Schuh, Kumar &

King, 2003a,b; Schuh, Minich & Kumar, 2003; Frary & Schuh,

2004, 2005a,b; Schuh et al., 2005; Van Siclen, 2006). The reason

for this is probably related to the increasing difficulty of

analysis with the extent of the boundary structure considered,

and to the decrease in strength of the correlations in boundary

character with the spatial separation of the boundaries (Schuh

& Frary, 2006). Therefore, analyses of triple junctions provide

descriptions of some of the more mathematically accessible

correlations, and substantial information about the nature of

the network. The analysis of correlations in grain-boundary

character around a triple junction is hence not only of prac-

tical interest but provides an opportunity to compare the

results derived using our method to those appearing in the

literature. For the sake of simplicity, the joint distribution

function of the three misorientations �A, �B and �C is deter-

mined, without consideration of the boundary-plane inclina-

tions.

Reference to Fig. 3 reveals that the misorientations of the

three boundaries around a triple junction depend on the

rotations of the three grains meeting at the triple junction; that

is, �A, �B and �C depend upon !A, !B and !C. The joint

distribution function constructed in step (i) includes each of

these grain rotations, and is found, as before, from equations

(1) and (4):

Fð!A; !B; !CÞ

¼
1

!3
s

þ
1

!2
s

�X1
n¼1

an½cosðkn!AÞ þ cosðkn!BÞ þ cosðkn!CÞ�

þ bn½sinðkn!AÞ þ sinðkn!BÞ þ sinðkn!CÞ�

�

þ
1

!s

�X1
m¼1

X1
n¼1

½am cosðkm!AÞ þ bm sinðkm!AÞ�

� ½an cosðkn!BÞ þ bn sinðkn!BÞ�

þ ½am cosðkm!BÞ þ bm sinðkm!BÞ�

� ½an cosðkn!CÞ þ bn sinðkn!CÞ�

þ ½am cosðkm!CÞ þ bm sinðkm!CÞ�

� ½an cosðkn!AÞ þ bn sinðkn!AÞ�

�

þ

�X1
j¼1

X1
m¼1

X1
n¼1

½aj cosðkj!AÞ þ bj sinðkj!AÞ�

� ½am cosðkm!BÞ þ bm sinðkm!BÞ�

� ½an cosðkn!CÞ þ bn sinðkn!CÞ�

�
: ð16Þ

Transformation from a distribution of grain rotations to one of

misorientations requires a description of the misorientations

in terms of the grain rotations, as in step (ii). This appears in

the form

�A

�B

�C

0
@

1
A ¼

0 �1 1

1 0 �1

�1 1 0

0
@

1
A !A

!B

!C

0
@

1
A; ð17Þ

derived by use of equation (2). Regrettably, the transforma-

tion matrix A is not invertible due to the linear dependence of

the misorientations; a Frank–Nabarro circuit around the triple

junction must start and finish in material of the same orien-

tation, implying that the combination of the misorientations

accumulated from grain to grain must be described by the

identity operation (Frary & Schuh, 2003a). Given two rota-

tions, this constraint uniquely specifies the third. Since A is not

invertible, we resort to singular-value decomposition and

piecewise application of the transformation components to

perform steps (iii) and (iv), as outlined in Appendix B. This

provides the probability distribution function
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Fð�A; �B; �CÞ

¼

� ffiffiffi
3
p

3!2
s

þ

ffiffiffi
3
p

6

�X1
n¼1

ða2
n þ b2

nÞ½cosðkn�AÞ þ cosðkn�BÞ

þ cosðkn�CÞ�

�
þ

ffiffiffi
3
p
!s

12

�X1
m¼1

X1
n¼1

½amþnðaman � bmbnÞ

þ bmþnðanbm þ ambnÞ�½cosðkm�A � kn�BÞ

þ cosðkm�B � kn�CÞ þ cosðkm�C � kn�AÞ�

� ½amþnðanbm þ ambnÞ � bmþnðaman � bmbnÞ�

� ½sinðkm�A � kn�BÞ þ sinðkm�B � kn�CÞ

þ sinðkm�C � kn�AÞ�

��
�ð�A þ �B þ �CÞ: ð18Þ

Our definitions of �A, �B and �C require that each one

display an independent periodicity of period !s, as repre-

sented by the cubic lattice and cubic unit cell in Fig. 5(a). To

perform step (v) and satisfy this requirement, we must initially

determine the periodicity of F. As above, !A, !B and !C are

symmetrically equivalent with !A þ j!s, !B þm!s and

!C þ n!s, respectively, where j, m and n are integers. From

equation (17), this implies the symmetric equivalence of �A,

�B and �C with �A þ !sð�mþ nÞ, �B þ !sð j� nÞ and

�C þ !sð�jþmÞ, respectively. Systematically varying the

allowed values of j, m and n results in a lattice of symmetrically

equivalent points in the ð1; 1; 1Þ plane, i.e. the

�A þ �B þ �C ¼ 0 plane, as displayed in Fig. 5(b). Examination

of these figures indicates that the lattice in Fig. 5(a) may be

constructed by imposing the necessary infinite translational

symmetry on the lattice in Fig. 5(b), or

F ð�A; �B; �CÞ ¼
P1
�1

Fð�A; �B; �C þ n!sÞ: ð19Þ

Practically speaking, though, F need only include those terms

that contribute probability density to the unit cell centred

about the origin. Since the terms of equation (19) represent

distributions on parallel ð1; 1; 1Þ planes, only those planes that

pass through the cubic unit cell of edge length !s centred on

the origin need be retained. Only three of the planes included

in equation (19) satisfy this condition, reducing the expression

for F to

F ð�A; �B; �CÞ ¼ Fð�A; �B; �C � !sÞ þ Fð�A; �B; �CÞ

þ Fð�A; �B; �C þ !sÞ; ð20Þ

giving the joint distribution function for the misorientations

around a triple junction, for arbitrary textures described by

equation (1).

5. Derived quantities

In order to better appreciate the correlations in grain-

boundary networks, the full information content of the

distributions F may be reduced to a few easily understood

parameters by applying a classification criterion to separate

the boundaries into discrete types. Although any classification

scheme dependent on the boundary misorientation may be

used with the above distributions, we restrict ourselves to two

types of quantities appearing frequently in the literature

pertaining to this problem. These are the special fraction p –

the fraction of boundaries within the networks whose disor-

ientation falls below a threshold value �t – and the triple-

junction fractions J3, J2, J1 and J0 – the fractions of triple

junctions coordinated by the subscripted number of special

boundaries. In this section, we derive these quantities from

equation (13) and equation (20), respectively.

5.1. Special fraction

The fraction of boundaries with a disorientation less than

the threshold angle �t is given by the integral

p ¼
R�t

��t

F ð�Þ d� ð21Þ
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Figure 5
Lattices of symmetrically equivalent points and corresponding unit cells
for �A, �B and �C at a triple junction. (a) �A, �B and �C each display
independent periodicities of !s, resulting in a cubic lattice. The size of the
markers indicates the relative positions of points residing in the three
ð1; 1; 1Þ-type planes shown. (b) The three misorientations display joint
periodicities, such that the lattice resides entirely in the ð1; 1; 1Þ plane and
each lattice point satisfies the constraint �A þ �B þ �C ¼ 0.



with the constraint that 0 � �t <!s=2, since this spans the

unique range of the disorientation �. Performing this integral

using equation (13) for F ð�Þ gives

p ¼
2�t

!s

þ
!2

s

2�

X1
n¼1

1

n
ða2

n þ b2
nÞ sinðkn�tÞ: ð22Þ

5.2. Triple-junction fractions

Determining the fractions of triple junctions is rather more

involved, since the joint distribution of misorientations around

a triple junction must be manipulated rather than the distri-

bution of a single misorientation. The steps required to

determine the triple-junction populations are the following.

(i) Specify the disorientation �t that separates the low

disorientation special boundaries from the high disorientation

general boundaries. �t is by definition unsigned, and must fall

within the range 0 � �t <!s=2.

(ii) Classify every region within the fundamental zone of the

joint misorientation distribution in terms of the number of

misorientations �A, �B and �C in that region smaller in

magnitude than the threshold disorientation �t. Within a

particular region, this provides the number of special bound-

aries coordinating a given triple junction, or equivalently the

subscript of the triple-junction fraction to which probability

density falling within this region contributes. An example of

this classification is performed for equation (20) in Fig. 6(a)

and for equation (18) in Fig. 6(b) for the case of 0 � �t <!s=3,

where white regions containing no special boundaries contri-

bute to J0, and the three successive shades of grey contribute

to J1, J2 and J3, respectively.

(iii) Integrate the surface distribution function over the

ranges specified above and construct the triple-junction frac-

tions by summing the results from regions of the same special

boundary coordination. Integration over a single region is

performed by parameterizing the surface in �A and �B, orZ
S

F ðyÞ dA ¼

ZZ
T

F ðyð�A; �BÞÞ
@y

@�A

�
@y

@�B

����
���� d�A d�B; ð23Þ

where y ¼ �Ay1 þ �By2 þ �Cy3 is expressed as a function

of �A and �B alone using the equation of the surface,

�A þ �B þ �C ¼ 0. The magnitude of the cross product of the

partial derivatives of y appearing in equation (23) is a

numerical factor related to the ratio of a unit surface area to

the projected area in the plane spanned by �A and �B and, in

this case, is a constant equal to
ffiffiffi
3
p

.

For the sake of brevity, we omit the equations for the

boundaries of the regions within the fundamental zone, as well

as the integral equations leading to the derivation of the triple-

junction fractions. The final results of this analysis appear in

Appendix C, where we present a complete analytical solution

for the triple-junction distribution for arbitrary texture func-

tions. The reader will notice that these expressions satisfy

several physically necessary constraints; for example, since

every triple junction must be one of J3, J2, J1 or J0, the sum of

these quantities must be unity, or

J3 þ J2 þ J1 þ J0 ¼ 1: ð24Þ

A further constraint arises when each boundary in the system

may be uniquely assigned to a single triple junction, namely,

that the triple-junction fractions must be consistent with the

fraction of special boundaries around that junction, i.e.

J3 þ 2J2=3þ J1=3 ¼ p: ð25Þ
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Figure 6
Representation of the distribution functions for misorientations about a
triple junction. Triple junctions are classified by the number of
misorientations smaller in magnitude than �t; for this figure,
0 � �t <!s=3. Darker shading corresponds to more special boundaries,
e.g. white is a J0 region and dark grey is a J3 region. Solid lines indicate
unit-cell borders in the current representation and dashed lines in the
alternative representation. (a) Classification of triple junctions as defined
by equation (20). For clarity of representation, the distribution is
projected into the plane spanned by �A and �B. This representation is
preferred for integration due to the simplicity of the equations of the
region boundaries. (b) Classification of the triple-junction distribution
defined by equation (18). Bands of special boundaries occur in a high-
symmetry configuration, and classification is continued outside the
fundamental zone to emphasize this symmetry. The three regions in
dashed lines correspond to the three parallel planes that intersect the unit
cell appearing in Fig. 5(a).



6. Comparison with prior literature

The majority of investigations into correlated grain boundary

structures consider two-dimensional networks similar to our

system (Schuh, Minich & Kumar, 2003; Frary & Schuh, 2003b,

2004, 2005a,b; Schuh & Frary, 2006; Van Siclen, 2006); this

restriction is due principally to the complexity of the three-

dimensional case. Of these, only the works of Frary & Schuh

(2004) and Van Siclen (2006) provide analytical solutions for

the special fraction and triple-junction fractions of correlated

networks. The present solution is exact for arbitrary two-

dimensional polycrystals, and therefore more general as

compared with these studies. When specific simplifying

assumptions are used, the results of Frary & Schuh (2004) and

Van Siclen (2006) can be recovered. In this section, we

demonstrate agreement with their results by simplifying our

expression for the special fraction to a form that corresponds

with their solutions, and further by numerical evaluation and

comparison of triple-junction fractions.

6.1. Simplification for sharp textures

Our decision to represent f(!) in equation (1) as a Fourier

series allows us to predict grain-boundary character distribu-

tions for arbitrary orientation distribution functions, and

naturally captures the effect of the k-fold rotational axis

consistent with any chosen crystal symmetry. For certain

situations, the above distributions may be converted to inte-

grals, and potentially evaluated to provide simple closed-form

expressions. The necessary, though not sufficient, conditions

for this to be done while maintaining accurate distributions

are:

(i) a closed-form analytic expression for f(!), the orienta-

tion distribution function, exists and is readily available;

(ii) the texture is sufficiently sharp that any distributions of

probability density arising from symmetrically equivalent

points do not impinge on the fundamental zone of the distri-

bution being converted.

As an example of the procedure, we shall convert the

orientation distribution function in equation (1) to integral

form. By condition (i), the Fourier coefficients may be calcu-

lated as analytic functions of n; that is, an and bn in equation

(1) may be expressed as a(n) and b(n), respectively. This

allows the Fourier-series representation of the orientation

distribution function to be written as

f ð!Þ ¼
k

2�
þ
X1
n¼1

faðnÞ cosðkn!Þ þ bðnÞ sinðkn!Þg�n; ð26Þ

where �n is the difference in magnitude of successive values

of n, in this case unity. We then perform the substitution

kn ¼ m, giving the equation

f ð!Þ ¼
k

2�
þ
X1
m¼k

1

k
a

m

k

	 

cosðm!Þ þ

1

k
b

m

k

	 

sinðm!Þ

� �
�m;

ð27Þ

where m is an integer multiple of k. Now, allow the period of

the function to approach infinity or, equivalently, allow k to

approach arbitrarily small values. While this effectively

removes any symmetrically equivalent points, the distribution

within the fundamental zone of �!s=2 � !<!s=2 remains

unchanged by condition (ii). �m, of magnitude k, becomes a

differential quantity, and f 0ð!Þ ¼ limk!0f ð!Þ becomes the

integral

f 0ð!Þ ¼
R1
0

a0ðnÞ cosðn!Þ þ b0ðnÞ sinðn!Þ dn; ð28Þ

where the index m is relabelled as n, and we define a0(n) and

b0(n) in terms of the Fourier coefficients a(n) and b(n) as

a0ðnÞ ¼ limk!0aðn=kÞ=k and b0ðnÞ ¼ limk!0bðn=kÞ=k. The

existence of non-zero values of a0(n) and b0(n) for some value

of n is implied by the normalization of f(!), i.e. that f 0(!) is

non-zero somewhere in the range �!s=2 � !<!s=2. Notice

that neither k nor !s appear explicitly in equation (28); by

removing all symmetrically equivalent points, the distribution

function is made independent of crystal symmetry.

Although the above example is circular, deriving an integral

form for f 0(!) given the existence and availability of a closed-

form analytical expression for f(!), the utility of this pro-

cedure lies in the ability to derive integral forms for other

distribution functions in terms of a0(n) and b0(n). For instance,

applying this procedure to equation (22) gives an expression

for the special fraction of the network:

p0 ¼ 2�

Z1

0

½a0ðnÞ2 þ b0ðnÞ2�
1

n
sinðn�tÞ dn; ð29Þ

where the prime symbol denotes quantities derived for sharp

textures. Comparison of this result with the expressions

provided by Frary & Schuh or Van Siclen requires the

evaluation of equation (29) using the Fourier coefficients that

describe their orientation distribution functions. Since they

define ! to be uniformly distributed on the interval

�!max � !<!max, the appropriate Fourier coefficients are

aðnÞ ¼
1

�n!max

sinðkn!maxÞ; bðnÞ ¼ 0: ð30Þ

Evaluation and simplification of equation (29) using these

Fourier coefficients provides the piecewise function

p0 ¼

1; 0 � !max <�t=2

�t

!max

� 1
4

�t

!max

� �2

; �t=2<!max;

8<
: ð31Þ

which is quite similar to the results in the literature. For

comparison, our equation (22) and the simplified equation

(31) appear along with the solutions by Frary & Schuh (2004)

and Van Siclen (2006) in Fig. 7.

The three regions of Fig. 7 separated by vertical dashed

lines correspond to three distinct physical situations, and are

identifiable by considering the limiting values of the misori-

entation. Equation (2) and the orientation distribution func-

tion reveal that misorientations exist only from �2!max to

2!max, or equivalently within 2!max of any of the sym-

metrically equivalent points occurring at integer multiples of

!s. For sharp textures where 2!max is smaller than the
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threshold disorientation �t, or 0 � !max <�t=2, every

boundary in the network is special. The upper limit of this

region is denoted by the vertical dashed line at small values of

!max. For weak textures, the distributions centred on other

multiples of !s begin to contribute to the probability that a

misorientation is smaller than �t, and the symmetry of the

crystal influences the special fraction. This occurs when

!s � 2!max is less than �t, or for !s=2� �t=2<!max; the lower

bound of the region is denoted by the vertical dashed line at

higher values of !max.

Frary & Schuh (2004) and Van Siclen (2006) separately

derived the expression for p shown by the dashed grey line in

Fig. 7. This solution is accurate for �t=2 � !max <!s=2� �t=2,

and within this range the special fraction is independent of

crystal symmetry exactly as claimed by Frary & Schuh (2004).

However, Frary & Schuh as well as Van Siclen neglected the

component of the piecewise solution for !max <�t=2, which

equation (31) includes. Furthermore, neither the solution by

Frary & Schuh and Van Siclen nor equation (31) consider

contributions from symmetrically equivalent distributions, and

hence deviate from the crystallographically consistent special

fraction for !s=2� �t=2<!max. Van Siclen acknowledged this,

and with an independent calculation found the value of the

special fraction for !max ¼ !s=2 or, in his terminology, for an

isotropic polycrystal (Van Siclen, 2006). Notice that our

exact solution, expressed in equation (22) and given in Fig. 7

by the dark solid line, is physically reasonable for

0 � !max <!s=2� �t=2, incorporates the effects of crystal

symmetry for !s=2� �t=2<!max, and includes the result

provided by Van Siclen for an isotropic crystal.

6.2. Numerical evaluation of triple-junction fractions

Triple-junction fractions contain significant information

about the structure of special boundary clusters; in particular,

the presence or absence of J2 junctions in a boundary network

influences the fraction of special boundaries necessary to

develop a percolating cluster (Frary & Schuh, 2004), and

presumably affects a variety of intergranular phenomena.

Frary & Schuh (2004) and Van Siclen (2006) developed closed-

form analytical solutions for the triple-junction fractions with

an orientation distribution function distributed uniformly on

the interval �!max � !<!max. The results of these authors

for 0 � !max <!s=2� �t=2 are identical and appear in Fig. 8 as

the dark solid line. A second solution found by Van Siclen for

!max ¼ !s=2 is denoted by the heavy dashed line. For

comparison, the fractions in a random polycrystal without

crystallographic consistency are given as dotted lines.

Imposing the requirement of crystallographic consistency
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Figure 7
Analytical solutions for the special fraction of boundaries in correlated
boundary networks, for the specific case where ! is uniformly distributed
on the interval �!max � !<!max and �t ¼ !s=6 with !s the angle of
rotational symmetry of the crystallites. Our exact solution [equation (22)]
is given by the solid black line and is valid over the full range of !max=!s.
The vertical dashed lines appear at !max ¼ �t=2 and !max ¼ !s=2� �t=2.
The solutions of Frary & Schuh (2004) and Van Siclen (2006) are
represented by the dashed grey line, which deviates for !max <�t=2 and
excludes the effects of crystal symmetry for !s=2� �t=2<!max. A further
result for !max ¼ !s=2, found by Van Siclen, is denoted by the black dot.
Equation (31), our simplification for sharp textures, is shown by the series
of grey points.

Figure 8
Triple-junction fractions plotted as a function of the special boundary
fraction in correlated boundary networks, for the specific case where ! is
distributed uniformly on the interval �!max � !<!max. For comparison,
the dotted lines show the predicted triple-junction fractions for a random
(uncorrelated) spatial distribution of misorientations. Solutions by Frary
& Schuh (2004) and Van Siclen (2006) for !max <!s=2� �t=2 appear as
the solid lines, and the specific case derived by Van Siclen for !max ¼ !s=2
is given by the dashed lines. Our solutions, presented in Appendix C,
migrate continuously over the regions shaded in grey with changes in the
values of !s and �t.



clearly affects the triple-junction fractions and, through them,

the topology of the boundary network.

For comparison with our results, we use the Fourier coef-

ficients of equation (30) to numerically evaluate the equations

presented in Appendix C. By independently varying the

threshold disorientation �t over 0 � �t <!s=2 and !max over

0 � !max < 2!s, we find a continuous range of allowable triple-

junction fractions, shown in Fig. 8 as the shaded grey region.

Although Frary & Schuh and Van Siclen developed equations

within the allowable range of values, they do not describe the

boundaries of our results. While this subtle effect is difficult to

see in Fig. 8, our results for this specific texture include those

of Frary & Schuh (2004) and Van Siclen (2006), the transi-

tional solutions between theirs, and further allowable triple-

junction fractions outside their equations.

7. Conclusions

The analysis of correlations in grain-boundary distributions is

critical to understanding intergranular and transgranular

phenomena, and is presumably of interest for those investi-

gating any material behaviour strongly affected by boundary

character. Our contribution in this paper is an analytical

method to describe and determine correlations in grain-

boundary character arising solely from the requirement for

crystallographic consistency in polycrystals with uncorrelated

grain orientations. For the specific case of two-dimensional or

two-dimensionally textured polycrystals, we present an exact

solution for the misorientation correlations at triple junctions.

Extension of the method to more complex structures, e.g. grain

clusters of more than three boundaries, quadruple nodes in

three-dimensional structures with the required texture etc., is

possible using the same approach. Our results differ from

prior analytical work along these lines in a few respects. Most

notably, our expression of distribution functions as Fourier

series provides a general solution equally pertinent to all

allowed textures and crystal systems, thereby avoiding the

necessity of lengthy derivations for individual instances.

Furthermore, the prior literature almost exclusively examines

correlations in classification of boundaries arising from the

granular nature of the material, particularly in terms of the

triple-junction fractions of ‘special’ and ‘general’ boundaries.

Our analysis instead considers correlations among the quan-

tities describing the boundaries, e.g. misorientation angles. This

allows classification to be performed as a distinct secondary

step, and thereby clarifies the nature and extent of correlations

in the structure.

APPENDIX A
Definite trigonometric integrals

Integration of texture functions expressed using the Fourier-

series representation generally requires integration of trig-

onometric terms over intervals corresponding to a single

period. The values of these definite integrals may be found by

expansion of the trigonometric terms as complex exponentials,

followed by evaluation of the integral of each exponential

independently. A reference for integrals of trigonometric

terms used in this paper follows, omitting the integrals of odd

functions, which vanish:

R�
��

cosðnxÞ dx¼ 0 ð32Þ

R�
��

cosðmxÞ cosðnxÞ dx¼ ��mn ð33Þ

R�
��

sinðmxÞ sinðnxÞ dx¼ ��mn ð34Þ

Z�

��

cosð jxÞ cosðmxÞ cosðnxÞ dx¼
�

2
ð�mþn;j þ �jþn;m þ �jþm;nÞ

ð35Þ

Z�

��

cosð jxÞ sinðmxÞ sinðnxÞ dx¼
�

2
ð��mþn;j þ �jþn;m þ �jþm;nÞ;

ð36Þ

where the indices j, m and n are positive integers and � is the

Kronecker delta.

APPENDIX B
Singular-value decomposition

The matrix A in equation (17) is not invertible due to the

dependence of the misorientations as derived from physical

arguments. Performing singular-value decomposition on A

results in the factorization

A ¼ URVT

¼

1=
ffiffiffi
6
p

�1=
ffiffiffi
2
p

1=
ffiffiffi
3
p

1=
ffiffiffi
6
p

1=
ffiffiffi
2
p

1=
ffiffiffi
3
p

�2=
ffiffiffi
6
p

0 1=
ffiffiffi
3
p

0
B@

1
CA

ffiffiffi
3
p

0 0

0
ffiffiffi
3
p

0

0 0 0

0
B@

1
CA

�

1=
ffiffiffi
2
p

�1=
ffiffiffi
2
p

0

1=
ffiffiffi
6
p

1=
ffiffiffi
6
p

�2=
ffiffiffi
6
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

0
B@

1
CA; ð37Þ

where the transformation A is expressed in terms of an

orthogonal matrix V, a matrix R that contains the singular

values of A and performs a stretching of space, and a further

orthogonal matrix U; a single transformation A is now

replaced by three component transformations. The columns of

V and U form orthonormal bases for the x and y spaces,

respectively.

We now consider these transformations in order. The initial

component of the desired transformation in equation (37) is a

change in coordinates from !A, !B and !C to v1, v2 and v3, the

columns of V. This transformation is performed by the matrix

VT, and is given explicitly by
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v1

v2

v3

0
@

1
A ¼ 1=

ffiffiffi
2
p

�1=
ffiffiffi
2
p

0

1=
ffiffiffi
6
p

1=
ffiffiffi
6
p

�2=
ffiffiffi
6
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

0
@

1
A !A

!B

!C

0
@

1
A: ð38Þ

Inversion of this equation provides the relations

!A ¼ v1=
ffiffiffi
2
p
þ v2=

ffiffiffi
6
p
þ v3=

ffiffiffi
3
p

, !B ¼ �v1=
ffiffiffi
2
p
þ v2=

ffiffiffi
6
p
þ

þ v3=
ffiffiffi
3
p

and !C ¼ �2v2=
ffiffiffi
6
p
þ v3=

ffiffiffi
3
p

. Since V is an

orthogonal matrix, the distribution will remain normalized

during direct substitution of the above equalities into equation

(16); this completes one component of the transformation

A.

The remaining components of the transformation A appear

as

�A

�B

�C

0
B@

1
CA ¼

1=
ffiffiffi
6
p

�1=
ffiffiffi
2
p

1=
ffiffiffi
3
p

1=
ffiffiffi
6
p

1=
ffiffiffi
2
p

1=
ffiffiffi
3
p

�2=
ffiffiffi
6
p

0 1=
ffiffiffi
3
p

0
B@

1
CA

�

ffiffiffi
3
p

0 0

0
ffiffiffi
3
p

0

0 0 0

0
B@

1
CA

v1

v2

v3

0
B@

1
CA: ð39Þ

Examination of R reveals that the null space of the transfor-

mation A is spanned by a unit vector pointing along v3; the

dependence of Fðv1; v2; v3Þ on this quantity must be removed

by integration before the remaining transformation may

proceed. To determine the limits of integration, recall the

symmetric equivalence of !A, !B and !C with !A þ j!s,

!B þm!s and !C þ n!s, respectively, where j, m and n are

integers. From equation (38), this implies the symmetric

equivalence of v1, v2 and v3 with v1 þ ð j�mÞ!s=
ffiffiffi
2
p

,

v2 þ ð jþm� 2nÞ!s=
ffiffiffi
6
p

and v3 þ ð jþmþ nÞ!s=
ffiffiffi
3
p

,

respectively. Notice that setting the values of j, m and n each

to unity shifts the value of v3 by the smallest amount that

simultaneously leaves the values of v1 and v2 invariant; hence,

the distribution is periodic in v3 with a period of
ffiffiffi
3
p
!s, and the

dependence on v3 may be removed by integrating over this

range. The appropriate integral is therefore

Fðv1; v2Þ ¼
Rffiffi3p !s=2

�
ffiffi
3
p
!s=2

Fðv1; v2; v3Þ dv3: ð40Þ

Performing this integral, with reference to the integrals of

trigonometric functions in Appendix A allows the joint

distribution function of v1 and v2 to be expressed by

Fðv1; v2Þ ¼

ffiffiffi
3
p

!2
s

þ

ffiffiffi
3
p

2

�X1
n¼1

ða2
n þ b2

nÞ

�
cosð

ffiffiffi
2
p

knv1Þ
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� ffiffiffi
2
p

k

2
nðv1 þ
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3
p

v2Þ

�

þ cos

� ffiffiffi
2
p

k

2
nðv1 �

ffiffiffi
3
p

v2Þ

���

þ

ffiffiffi
3
p
!s

4

�X1
m¼1

X1
n¼1

½amþnðaman � bmbnÞ

þ bmþnðanbm þ ambnÞ�

�

�
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� ffiffiffi
2
p

kmv1 þ
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p
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2
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ffiffiffi
3
p

v2Þ

�

þ cos

� ffiffiffi
2
p

kmv1 þ

ffiffiffi
2
p

k

2
nðv1 �

ffiffiffi
3
p

v2Þ

�

þ cos

� ffiffiffi
2
p

k

2
mðv1 þ

ffiffiffi
3
p

v2Þ �

ffiffiffi
2
p

k

2
nðv1 �

ffiffiffi
3
p

v2Þ

��

þ ½amþnðanbm þ ambnÞ � bmþnðaman � bmbnÞ�

�

�
� sin

� ffiffiffi
2
p

kmv1 þ

ffiffiffi
2
p

k

2
nðv1 þ

ffiffiffi
3
p

v2Þ

�

þ sin

� ffiffiffi
2
p

kmv1 þ

ffiffiffi
2
p

k

2
nðv1 �

ffiffiffi
3
p

v2Þ

�

þ sin

� ffiffiffi
2
p

k

2
mðv1 þ

ffiffiffi
3
p

v2Þ �

ffiffiffi
2
p

k

2
nðv1 �

ffiffiffi
3
p

v2Þ

���
:

ð41Þ

At this point, the remaining v1 and v2 must be found in terms

of the misorientations �A, �B and �C. Our procedure is similar

to the construction of the pseudoinverse A+, as explained in,

for example, Strang (2006). Recall the decomposition of A and

the subsequent completion of the transformation VT; this

situation is expressed mathematically by

y ¼ Ax ¼ URVTx ¼ URv: ð42Þ

Left multiplication of the sides of this equation by UT and R+,

defined as the matrix RT with the non-zero diagonal values

inverted, provides the equation

RþUTy ¼ RþUTURv ¼ RþRv; ð43Þ

where UTU ¼ I since U is orthogonal. Explicit evaluation

using the matrices provided in equation (37) gives the matrix

equation

ffiffiffi
2
p
=6

ffiffiffi
2
p
=6 �

ffiffiffi
2
p
=3

�1=
ffiffiffi
6
p

1=
ffiffiffi
6
p

0

0 0 0

0
@

1
A �A

�B

�C

0
@

1
A ¼

1 0 0

0 1 0

0 0 0

0
@

1
A v1

v2

v3

0
@

1
A;
ð44Þ

from which v1 ¼
ffiffiffi
2
p
�A=6þ

ffiffiffi
2
p
�B=6�

ffiffiffi
2
p
�C=3 and

v2 ¼ ��A=
ffiffiffi
6
p
þ �B=

ffiffiffi
6
p

. An expression for v3 is not necessary,

since integration has already removed the dependence of F on

this quantity. Substitution of these equations into equation

(41), and multiplication by the product of the non-zero diag-

onal values of R+, in this case 1=3, results in the equation
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Fð�A; �B; �CÞ
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� ffiffiffi
3
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3!2
s

þ

ffiffiffi
3
p
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�X1
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nÞ

�
cos

�
k

3
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�
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�
k

3
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þ cos

�
k

3
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���

þ

ffiffiffi
3
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!s
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amþnðaman � bmbnÞ

þ bmþnðanbm þ ambnÞ

�
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cos
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k

3
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�

þ cos

�
k

3
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k

3
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�

þ cos

�
k

3
mð�A þ �B � 2�CÞ �

k

3
nð�2�A þ �B þ �CÞ

��

þ ½amþnðanbm þ ambnÞ � bmþnðaman � bmbnÞ�

�

�
sin

�
k

3
mð�2�A þ �B þ �CÞ �

k

3
nð�A � 2�B þ �CÞ

�

þ sin

�
k

3
mð�A � 2�B þ �CÞ �

k

3
nð�A þ �B � 2�CÞ
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þ sin

�
k

3
mð�A þ �B � 2�CÞ �

k

3
nð�2�A þ �B þ �CÞ

����

� �ð�A þ �B þ �CÞ ð45Þ

for the joint probability distribution of the misorientations

around a triple junction. The Dirac delta function reduces F

from a volumetric probability distribution to a surface prob-

ability distribution; to understand the appearance of this term,

recall that, for a circuit around a triple junction, the combi-

nation of the misorientations accumulated from grain to grain

must be described by the identity operation. Mathematically,

this is expressed in our current system as

�A þ �B þ �C ¼ 0: ð46Þ

This requires the allowable sets of misorientations, considered

as vectors in y space, to contain no component in the direction

of the vector ½1; 1; 1�. This is actually apparent directly from

equation (37); since the column vector of U spanning the left

null space, or the subspace unreachable by the transformation

A, points in this direction, a surface probability density func-

tion must result. The constraint expressed by the Dirac delta

function allows the expression for Fð�A; �B; �CÞ to be consid-

erably simplified, to the form appearing in equation (18).

APPENDIX C
Triple-junction fractions

Following the procedure outlined in x5.2 provides the equa-

tions for the triple-junction fractions J3, J2, J1 and J0 in terms of

the Fourier coefficients an and bn and the threshold angle �t.

Owing to the disappearance of certain regions and the

appearance of others when �t ¼ !s=3, the form of the equa-

tions depends to a certain extent on the threshold angle. For

0 � �t <!s=3,

J3 ¼
3�2

t

!2
s

þ
3!2

s

4�2

�X1
n¼1

1

n2
ða2

n þ b2
nÞ½1� cosðkn�tÞ

þ kn�t sinðkn�tÞ�

�
þ

3!3
s

4�2

�X1
m¼1
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n¼1

1

ðmþ nÞm
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�
ð47Þ

J2 ¼
3�2

t

!2
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�
ð48Þ

J1 ¼
3�tð2!s � 5�tÞ
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�
: ð50Þ

Otherwise, when !s=3 � �t <!s=2, the equations
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J3 ¼ 1þ
6�tð2�t � !sÞ
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�
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6�tð3!s � 4�tÞ

!2
s

þ
3!2

s

2�2

�X1
n¼1

1

n2
ða2

n þ b2
nÞ sinðkn�tÞ

� ½�4kn�t þ 3n�� 2 sinðkn�tÞ�

�

þ
3!3

s

2�2

�X1
m¼1

X1
n¼1

1

ðmþ nÞm
½amþnðaman � bmbnÞ

þ bmþnðanbm þ ambnÞ�f� cosðkn�tÞ þ cos½kðmþ nÞ�t�

� cos½kðm� nÞ�t� þ cos½kð2mþ nÞ�t�g

�
ð52Þ

J1 ¼
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J0 ¼ 0 ð54Þ

are used instead.

This work was supported by the US National Science

Foundation under contract No. DMR-0346848.

References

Adams, B. L. (1986). Metall. Mater. Trans. A, 17, 2199–2207.
Adams, B. L. (1993). Mater. Sci. Eng. A, 166, 59–66.
Adams, B. L. & Field, D. P. (1992). Metall. Mater. Trans. A, 23,

2501–2513.
Adams, B. L., Wright, S. I. & Kunze, K. (1993). Metall. Mater. Trans.

A, 24, 819–831.
Adams, B. L., Zhao, J. & Grimmer, H. (1990). Acta Cryst. A46,

620–622.
Brandon, D. G. (1966). Acta Metall. 14, 1479–1484.
Bunge, H. J. (1993). Texture Analysis in Materials Science:

Mathematical Methods, 1st ed. Gottingen: Cuvillier Verlag.
Frary, M. & Schuh, C. A. (2003a). Acta Mater. 51, 3731–3743.

Frary, M. & Schuh, C. A. (2003b). Appl. Phys. Lett. 83, 3755–3757.
Frary, M. & Schuh, C. A. (2004). Phys. Rev. B, 69, 134115.
Frary, M. & Schuh, C. A. (2005a). Acta Mater. 53, 4323–4335.
Frary, M. & Schuh, C. A. (2005b). Philos. Mag. 85, 1123–1143.
Gertsman, V. Y. (2001a). Acta Cryst. A57, 369–377.
Gertsman, V. Y. (2001b). Acta Cryst. A57, 649–655.
Gertsman, V. Y. (2002). Acta Cryst. A58, 155–161.
Gertsman, V. Y., Zhilyaev, A. P., Pshenichnyuk, A. I. & Valiev, R. Z.

(1992). Acta Metall. Mater. 40, 1433–1441.
Grimmer, H. (1974). Acta Cryst. A30, 685–688.
Grimmer, H. (1979). Scr. Metall. 13, 161–164.
Grimmer, H. (1980). Acta Cryst. A36, 382–389.
Haessner, F., Pospiech, J. & Sztwiertnia, K. (1983). Mater. Sci. Eng. 57,

1–14.
Handscomb, D. C. (1957). Can. J. Math. 10, 85–88.
Hilliard, J. E. (1962). Trans. Metall. Soc. AIME, 224, 1201–1211.
Kumar, M., King, W. E. & Schwartz, A. J. (2000). Acta Mater. 48,

2081–2091.
Kumar, M., Schwartz, A. J. & King, W. E. (2002). Acta Mater. 50,

2599–2612.
Mackenzie, J. K. (1958). Biometrika, 45, 229–240.
Mackenzie, J. K. (1964). Acta Metall. 12, 223–225.
Mackenzie, J. K. & Thomson, M. J. (1957). Biometrika, 44, 205–210.
Minich, R. W., Schuh, C. A. & Kumar, M. (2002). Phys. Rev. B, 66,

052101.
Miyazawa, K., Ito, K. & Ishida, Y. (1996). Mater. Sci. Forum, 207–209,

301–304.
Miyazawa, K., Iwasaki, Y., Ito, K. & Ishida, Y. (1996). Acta Cryst.

A52, 787–796.
Morawiec, A. (1995). J. Appl. Cryst. 28, 289–293.
Morawiec, A. & Field, D. P. (1996). Philos. Mag. A73, 1113–1130.
Morris, P. R., Zhao, J. W. & Adams, B. L. (1988). Metall. Mater. Trans.

A, 19, 2611.
Pan, Y. & Adams, B. L. (1994). Scr. Metall. Mater. 30, 1055–1060.
Philofsky, E. M. & Hilliard, J. E. (1969). Q. Appl. Math. 27, 79–86.
Read, W. & Shockley, W. (1950). Phys. Rev. 78, 275–289.
Reed, B. W. & Kumar, M. (2006). Scr. Mater. 54, 1029–1033.
Roe, R.-J. (1965). J. Appl. Phys. 36, 2024–2031.
Roe, R.-J. (1966). J. Appl. Phys. 37, 2069–2072.
Saylor, D. M., El Dasher, B., Pang, Y., Miller, H. M., Wynblatt, P.,

Rollett, A. D. & Rohrer, G. S. (2004). J. Am. Ceram. Soc. 87,
724–726.

Saylor, D. M., El Dasher, B. S., Rollett, A. D. & Rohrer, G. S. (2004).
Acta Mater. 52, 3649–3655.

Saylor, D. M., El Dasher, B., Sano, T. & Rohrer, G. S. (2004). J. Am.
Ceram. Soc. 87, 670–676.

Saylor, D. M., Morawiec, A. & Rohrer, G. S. (2003a). Acta Mater. 51,
3663–3674.

Saylor, D. M., Morawiec, A. & Rohrer, G. S. (2003b). Acta Mater. 51,
3675–3686.

Schuh, C. A. & Frary, M. (2006). Scr. Mater. 54, 1023–1028.
Schuh, C. A., Kumar, M. & King, W. E. (2003a). Acta Mater. 51,

687–700.
Schuh, C. A., Kumar, M. & King, W. E. (2003b). Z. Metallkd. 94,

323–328.
Schuh, C. A., Kumar, M. & King, W. E. (2005). J. Mater. Sci. 40,

847–852.
Schuh, C. A., Minich, R. W. & Kumar, M. (2003). Philos. Mag. 83,

711–726.
Strang, G. (2006). Linear Algebra and its Applications, 4th ed.

Belmont, CA: Thomson, Brooks/Cole.
Van Siclen, C. D. (2006). Phys. Rev. B, 73, 184118.
Warrington, D. H. & Boon, M. (1975). Acta Metall. 23, 599–607.
Zhao, J. W. & Adams, B. L. (1988). Acta Cryst. A44, 326–336.
Zhao, J. W., Koontz, J. S. & Adams, B. L. (1988). Metall. Mater. Trans.

A, 19, 1179–1185.

research papers

328 Mason and Schuh � Correlated grain-boundary distributions Acta Cryst. (2007). A63, 315–328


